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Abstract

We investigate connections between pairs of pseudo-Riemannian metrics whose sum is a (tensor)
product of a covector field with itself. A bijective mapping between the classes of Euclidean and
Lorentzian metrics is constructed as a special result. The existence of such maps on a differen-
tiable manifold is discussed. Similar relations for metrics of arbitrary signature on a manifold are
considered. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1], the time is defined as a congruence of lines on a real differentiable manifold
M. The vector fieldr tangent to this congruence is callegimporalfield. In the work
mentioned is stated that the Maxwell equations\dmvith an Euclidean metrie;;, i, j =
1,...,n:=dim M are derivable from the standard electromagnetic Lagrangia woith
a pseudo-Riemannian metgg;, = t;t; — e;j, t; ‘= €,’jtj. In the paper citeg;; is said to
be Lorentzian. Special metrigg; of this kind, when the norm afis two (with respect to
both metrics — see Eq. (4.1)), are considered (e.qg. [2], Section 2.6; [3], p. 219; [4], p. 148,
Lemma 36). A slightly more general construction of the kind mentioned can be found in [3,
pp. 241-242]. For it, without an investigation, is stated that it is Lorentzian again, which is
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not always the case (see Section 2). In the above constructiamsalso be taken to be the
gradient vector field of the global time function [3,5].

The purpose of the present work is to investigate pairs of pseudo-Riemannian metrics
(gij» hij) whose sum is a product of the covariant components of some vector,figdd
gij + hij = t;t; with, e.g.,t; := g;;¢/.2 In particular, we prove an important result for
physics that for any real Euclidean (resp. Lorentzian) metric there exists a real Lorentzian
(resp. Euclidean) metric forming with it such a pair.

The general case, for arbitrary pseudo-Riemannian mgirids investigated in Section
2. If g;; has a signaturép, g), i.e., if the matrix k;;] has p positive and; negative eigen-
values? then the signature df;;, if it is non-degenerate, which is the conventional case,
can be(q, p) or (g +1, p—1). As a side result, we prove thatgf; is an Euclidean metric,
then (forgijtitj # 1) the metrich;; = t;t; — g;; can be only Lorentzian or negatively
definite. As a corollary, we construct a map from the set of Euclidean metrics into the set of
Lorentzian ones. The applicability of the results of Section 2 is studied in Section 3. Here we
point to some topological obstacles that may arise in this direction. Section 4 is devoted to
some mappings between classes of Riemannian metrics and their properties. We construct
bijective maps from the set of metrics with signatige ¢) on the ones with signature
(g + 1, p — 1), which, in particular, is valid for the classes of Euclidean and Lorentzian
metrics? Bijective real maps between pseudo-Riemannian metrics of arbitrary signature
are also constructed. Some concluding remarks are presented in Section 5. We also correct
some wrong statements of [1].

Now, to fix the terminology, which significantly differs in different works, we present
some definitions.

Following [8, p. 273], we call Riemannian metric on a real differentiable maniféld
non-degenerate, symmetric and 2-covariant tensor i@d it. If for any non-zero vector
vatx € M is fulfilled g, (v, v) > 0, the metric is called proper Riemannian, positive
definite, or Euclidean; otherwise it is called indefinite or pseudo-Riemannian [8,9]. It is
known that every finite-dimensional paracompact differentiable manifold admits positively
definite (Euclidean) metrics ([8], p. 280; [9], Chapter IV, Section 1; Chapter I, Example
5.7; [10], Chapter 1, Excercise 2.3). A pseudo-Riemannian metric with exactly one positive
eigenvalue is called Lorentzian [2] (or some times Minkowskianj.in the above defini-

2Bundle decompositions and correspondences between various types of metric tensors are consequences of
the Witt (decomposition) theorem [6, Chapter XIV, Section 5]. The present paper deals with one specific such
correspondence based on the use of a vectorfieith appropriate properties.

3 Some times the paip, q) is called type ofg and the signature is defined as the number p — 4. In this
paper, we suppose the numberandg to be independent of the point at which they are calculated, i.e., here we
consider metrics whose signature is point-independent and so constant over the corresponding sets. The numbers
p andg are also known as positive index and (negative) index of the metric. Often, especially in the physical
literature, the signature is defined as an ordéuple (1, ... , &,) wherep (resp.g =n — p) of ¢1, ... , ¢, are
equal to+1 (resp.—1) or simply to the plus (resp. minus) sign and the ordenof.. , ¢, corresponds to one of
the signs of the diagonal elements of the metric in some pseudo-orthogonal basis.

4 A (partial) correspondence between Euclidean and Lorentzian metrics is established in [7] via the Einstein
equations.

5 One can also find the definition of a Lorentzian metric as a metric with only one negative eigenvalue [4, p. 55].
This definition is isomorphic to the one used in the present paper (see, e.g. [4, pp. 92-93]).
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tions the non-degeneracy condition is dropped, the prefix ‘semi-’ is added to the names of
the corresponding metrics [11], e.g., a semi-Riemannian metrid @& a symmetric two
times covariant tensor field on it [11].

2. Basic results

It is said that a Riemannian metricon U C M is of signature(p,q), p + ¢ =
n = dim M, if it has p positive andg negative eigenvalues. A semi-Riemannian metric
on U is of signature(p, ¢) and defect (or of signature(p, g, r), or r-degenerate with
signature(p, q)), p + g + r = n, if it has p positive,g negative, ana vanishing eigen-
values.

Throughout this paper the Latin indices run from kte= dim M < oo and a summation
from 1 ton over indices repeated on different levels is assumed.

Proposition 2.1. Let g be a Riemannian metric of signatuye ¢) onU € M, t be a vector
field on U,

AV

U% :={xlx e U,gt, 0y = 1},
<

and

g gti=hi=g(.)®g(. 1) —g. (2.1)

Then the tensor field h is:
(i) a Riemannian metric with signature, p) on Uj;
(i) a Riemannian metric with signatufe + 1, p — 1) on Uj;
(iii) a (parabolic) semi-Riemannian metric with signatige p — 1) and defeclon U,
i.e., onUZ the bilinear map h has q positivép — 1) negative, and one vanishing
eigenvalue

Proof. Sinceg is by definition a 2-covariant symmetric tensor field, sh teo. Hence, the
eigenvalues of remains to be studied.

Let x € U be an arbitrary fixed point. We shall prove the propositiorx ate., for
U = {x} C M. Then the general result will be evidentlds= U,y {x}. All the quantities
given in this proof will be taken at; so their restriction at will not be written explicitly.
We shall distinguish two cases.

‘Non-isotropic’ caser is non-isotropic, i.e.g(r, 1) # 0 and hence # 0. Let{E’} be
a basis inT, (M), the space tangent t at x, consisting of non-isotropic vectors with
E1 = t. Applying to this basis the standard Gramm-Schmidt orthogonalization procedure
([12], Chapter 4, Section 3; [13], pp. 206—208), with respect to the scalar prodyct
g(-, ), we can construct (after normalization) a pseudo-orthogonal bEsjgat x) such
thatE1 = 1/a, a := +4/]g(t, 1)] andg;; := g(E;, E;) = &;8;; (i is not a summation index
here!), wherep € N U {0} of the numberg;, ... , s, are equal to+1 while the others
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g = n — p of them are equal te-1 ands;; are the Kroneker deltas. With respect{fo },
we easily obtain

[hij] = diagle1(g(r, 1) — 1), —€2, ..., —&n),  &1=sigN(g(t, 1)). (2.2)

From here the formulated results follow immediately.

‘Isotropic’ case ¢ is isotropic, i.e.g(¢, t) = 0. As it is easily seen, this is possible only
fort =0orforn:=dimM >2andg, p > 1ifr #0.

Lets1 ands; be vector fields o/ ands; be orthogonal towith respect t, g(s2,t) = 0.
From (2.1) we obtaig (s1, t) + h(s1, t) = 0 andg(s2, s2) + h(s2, s2) = 0 which implyk to
be of signaturéq, p) as the one of is (p, ¢). Indeed, choosing a badig;} in which the
components of andh are, respectively;; = g;8;;, pofgi, ..., g, being equalter-1, the
rest of them being equal tel, andh;; = h;8;;, h; = £1,° we get};(g; + hi)sit’ =0,
andy_; (gi+h;)(s5)? = 0, wheresi, s5 andt’ are the components of, respectively,sz, and
tin{E;}. Thefirstequationimplie&; +h;) =0fori e I :={j : j € {l,...,n},t/ # 0}
and the second one witj = 0 fori € I ands, = A’ e Rfori ¢ I gives(g; +h;) =0
fori ¢ 1.7 Hence we haveég; + h;) = O for alli which means that the signaturesgadind
h are opposite. O

Corollary 2.1. Let g be a Riemannian metric of signatuie, g) onU € M and t be a
vector field on U. Assume t can be chosen suchgfrat) is less than, or greater than, or
equal to one on the whole set U. Then on U the tensor field h givéx byis:
(i) a Riemannian metric with signature, p) for g(z,1) < 1;
(i) a Riemannian metric with signatute + 1, p — 1) for g(¢,¢) > 1,
(i) a (parabolic) semi-Riemannian metric with signatugg p — 1) and defectl for
g(t,t) = 1, i.e., in this case h has q positivey — 1) negative, and one vanishing
eigenvalue

Proof. This resultis a version of Proposition 2.1 corresponding to the choicsuafh that
one of the set&/ T, U, andU is equal toU. O

Itis clear that ifg is a Riemannian metric ofi, then, choosing arbitrary some vector field
t onU with g(¢, 1) > 1, the map (2.1) yields (infinitely) many semi-Riemannian metrics
on U whose signature (and, possibly, defect) depends on the gigtm) on U. Generally,
differents generate different metrigs" from one and the same initial metrgc

Corollary 2.2. Lett be a vector field ovdy € M, e be an Euclidean metric on U,

Uz = {xlx € U, et Dl £ 1),

=
<

6The existence of such a basis is a simple consequence of the existence of a non-degenerate (generally
non-pseudo-orthogonal) transformation which reduces two square matrices to a diagonal form simultaneously
(see, e.g. [12, Chapter 4, Section 12]), in particular Theorem 6 of this reference can easily be modified in such
a way that to be valid for arbitrary symmetric real matrices (hint: replace the unit matrix wittediag. , ,),
& = £1,and uséx, y) = 3 ;&x'y! instead of(x, y) = 3 x7yP).

TSinceg(s2, 1) = Y ;gisht’ = 0, the particular choice of is admissible.
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and
g=ce(,)®e(,1)—e. (2.3)

Then the tensor fiel(R.3)is:
(i) a negatively definite Riemannian metricbn;
(i) a Lorentzian metric ol ;
(iii) a one-degenerate negatively definite semi-Riemannian metfit_on

Proof. See Proposition 2.1 fdip, ¢) = (n, 0).8 O

Summing up, if there exists a vector fieldsatisfyinge(t,t) # 1 ore(t,t) = 1 at
every point, then (2.3) defines a metric & for which there are three possibilities.
First, if e(r,r) > 1, it is Lorentzian. Second, i(z,t) = 1, it is semi-Riemannian,
viz. a one-degenerate metric, and, consequently, non-Riemannian one [11], and third, if
e(t,t) < 1, itis negatively definite, and so isomorphic to an Euclidean metric. From physi-
cal view-point, the most essential result is that if for everye choose some vector field
with e(z, t,) > 1, then the mapping+— g, given by (2.3) for = z,, maps the class of Eu-
clidean metrics o/ into the class of Lorentzian ones. It is clear, this mapping essentially
depends on the choice of the vector fieldased in its construction.

One may ask, what would happen if the signs before the terms in the right-hand side of
(2.1) are (independently) changed? The change of the sign before the first term results in
the following assertion.

Proposition 2.2. Let g be a Riemannian metric of signatuyge ¢) onU C M, tbe avector
field on U,

UZ = {xlx €U, —g(t, 0l Z 1,
<
and
g g =—g(.H®g(,1)—g. (2.4)
Theng~ is:

(i) a Riemannian metric with signatur(g, p) on 0;;
(i) a Riemannian metric with signatufg — 1, p + 1) on U;;
(iii) A (parabolic) semi-Riemannian metric with signatge— 1, p) and defeci. onU_,
i.e., onU_Z the bilinear map h has q positivép — 1) negative, and one vanishing
eigenvalue

Proof. This proof is almost identical to the one of Proposition 2.1. The only difference is
thatinitg(z, r) must be replaced by g(z, t). Formally this proof can be obtained from the
one of Proposition 2.1 by replacing inritby iz, i := /—1. O

8 For an independent proof, see LANL xxx archive server, E-print No. gr-qc/9802057.



326 B.Z. lliev/Journal of Geometry and Physics 34 (2000) 321-335

The change of the sign before the second term in (2.1) and in (2.4) is equivalent to put
g = —g’ with g’ being Riemannian metric with signatug, ¢). Then, sinceg(z,1) =
—g'(t, t) and the signature of is (¢, p), we obtain valid versions of Propositions 2.1 and
2.2 if we replace in therg, p, andg with —g, ¢, andp, respectively. Thus, we have proved
the next result.

Proposition 2.3. Let g be a Riemannian metric of signatuye ¢) onU C M, tbe avector
field on U,

UL = {x|x € U, Fg(t,0lx £ 1) = UF,
= z
and
g gt =g ®g(.1) +g. (2.5)
Theng® is:

() a Riemannian metric with signatutg, ¢) onUZ;
(i) a Riemannian metric with signatute + 1, ¢ ¥+ 1) onUZ;
(iii) a(parabolic) semi-Riemannian metric with deféand signature p+(£1-1)/2, g+
(¥1-1)/2)onUZ, i.e., inthis casg® hasp + (&1 — 1)/2 positiveg + (F1—1)/2
negative, and one vanishing eigenvalue

3. Applicability of the results

Up to this point we have supposed two major things: the existence of Euclidean or
Riemannian metrics and of a vector fieldith the corresponding properties bhc M oron
the whole manifold/. Inthis sense the above considerations are local or global, respectively.
Different conditions for global or local existence of (Euclidean) metrics are well-known and
are discussed at length in the corresponding literature (see, e.g. [14], Chapter IV or [9,15]).
In our case, the existence of Euclidean metridbis a consequence of the paracompactness
and finite-dimensionality of the manifold [9]. These assumptions are enough for the most
physical applications and we assume their validity in this work.

What concerns the existence of a vector fieldith properties required on a manifold
with Euclidean metrie (e(z, t) to be greater than, or equal to, or less than 1), some problems
may arise. If orr we do not impose additional restrictions, it always can be constructed
as follows: take a non-vanishing vector fietg1® on M soe(ro, 10) # O (everywhere on
M). Definingt := /atg/~/e(to, to) for a € R, a > 0, we gete(t, 1) = a. Hence, choosing
a % 1, we obtaire(z, 1) % 1. Obviously, the existence oin the first two casegz, 1) > 1,
is equivalent to the existence of a non-vanishing vector fieldfomwhile in the last one,
e(t,t) < 1, this is not necessary, viz. insitmay vanish on some subsets &hor even to
be the zero vector field oM.

9 See the partial discussion of this problem in [3, Section 5.2].
10 Generallyr is discontinuous (vide infra).
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The general conclusion is a vector field witfr, r) > 1 (over M) exists iff M admits
nowhere vanishing (o) vector field. Thus, our results concerning the cager) > 1
are applicable iff such a field exists. As we said above, this is just the situation if we do
not impose additional conditions anBut this is not satisfactory from the view-point of
concrete applications. For instance, in most mathematical investigations the (Euclidean or
semi-Riemannian) metrics are required to be differentiable of ¢!4$8,9,15,16], e.g., in
the Riemannian geometry one normally uéésnetrics. Such an assumption implies be
of class of smoothness at le@st. Analogous is the situation in physics, e.g., the treatment
of t as a temporal field requirego be at least continuous [1] and the considerations on the
background of general relativity force us to assurt@be of classC? [2].

Therefore, of greatimportance is the case when the vector fégltisfies certain smooth-
ness conditions, viz. when it is of cla€$' for somemn > 0. At this point some topological
obstacles may arise for the global existence wfith e(z,7) > 1. In fact, the above-said
implies that a vector field of classC™ with e(z, t) > 1 exists onU C M iff on U there
exists aC™ non-vanishing vector field. But it is well-known that not every manifold admits
such a tangent vector field [17]. Classical examples of this kind are the even-dimensional
sphere$, k e N: onS? does not exist non-vanishing (on the whgf) continuous vec-
tor field ([17], [18, Section 4.24]). Examples of the opposite kind are the odd-dimensional
spheress®~—1 ([17], [18, Excerise 4.26]) and the path-connected manifolds with(ffat
linear connection: they always admits glolsai non-vanishing vector fields® Also every
non-compact manifold admits® non-zero vector field [19]. An analysis of the question of
existence of vector fields (and Lorentz metrics) can be found in [4] where also other exam-
ples are presented. Consequently, the global existenc® of: > O fieldr with e(z, t) > 1
depends on the concrete maniféitiand has to be investigated separately for any particular
case.

The situation for an arbitrary Riemannian mefgics completely the same as described
above in the Euclidean case. If opsome additional, e.g., smoothness, conditions are not
imposed a vector field on U with g(z, )|y § 1 can always be constructed for every
U C M. In fact, letrg be any (generally discontinuous) non-vanishinglonector field.

By rescaling locally the components gfwe can obtain from it a non-vanishing vector
field 7, such thatg(z). 1)y # 0 and sigrig(zy. t))lv) = & = constant. Defining :=
Jatj|g (1, tc/,)rl/2 fora e R,a > 0, we getg (¢, t) = ea. Consequently, by an appropriate
choice oft anda, we canrealizewith g(z, 1) |y E 1. Sincey is by definition non-degenerate

(the kernel ofg consists of the zero vector field @n), the relationg(z, t)|y > 1 impliest

to be a non-vanishing vector field. Obviously, this conclusion does not concern the case of
t with g(z, t)]y < 1 whenr can vanish somewhere or everywherelon

The case for with g(z,1)|y > 1 is completely different whety = M andC™, m > 0,
metrics and vector fields are considered: generally, such a vector field does not exist globally,

111n the last case, such a vector field can be constructed as follows. Fix a non-zeroyettan arbitrary point
xo of a simple-connected manifold. Define the vector field at anyx € M as the result of the parallel transport,
assigned to the given flat connectionpgffrom xo to x along some path connecting andx. Thenv is a tangent
vector field onM which is non-vanishing and of clags-.
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i.e., on the whole manifold/. This existence depends on the topological propertied of
and has to be explored separately in any concrete case.

In conclusion, the results of Section 2 are valid locally and for their global, i.e., on the
whole manifoldM, validity may arise obstacles of pure topological nature. Sincd pdue
to the paracompactness and finite-dimensionality, an Euclidean metric always exists, in the
Euclidean case this is connected with the existence of a vectorfigthiproperties required.

Now consider the class of (resp. smooth) Lorentzian metricdfon.e., thoseg for
which(p, ¢) = (1, n—1). Forthem, according to Corollary 2.1, the metriis of signature
(n —1,1) for g(z,7) < 1 and(n, 0) for g(z,7) > 1 (resp. if suchr exists onM), i.e., in
the former casg andh are isomorphic and in the latter ohés a Euclidean metric. Thus,
if for every g we choose some vector fietd with g(z¢, 2,) > 1, then the whole class of
(resp. smooth) Lorentzian metrics is mapped into the class of (resp. smooth) Euclidean ones
by the mapping — & given by (2.1) fort = ¢, (resp. if such smooth, exists onM).
Evidently, different vector fields, realize different such maps.

4. On properties of some mappings between Riemannian metrics

Some natural questions are in order. [t (resp.Gg’q) be the set of all Riemannian
metrics (resp. of signatuig, g)) onU < M. If ¢ is a fixed vector field o/, then what is
the character of the mayj, : GY — GY given by (2.1)? For instance, can it be subjective,
injective, or bijective? Can any two Riemannian metrics (with ‘corresponding’ signatures)
be mapped into each other by for a suitabler? etc.

Proposition4.1. Letg € GY . tbe arbitrarily fixed vector fieldon U, angf, : GV — GY
be given via2.1). Then:

(i) the mapy;, |;—o is bijection

(ii) if » € R\{1}, the mapy;, is injection on the seftg : ¢ € Gg,q, gt, 1) = A}

(iii) if dim M > 2, the mapyj, is (00”1 — 1)-to-one onthe sdg : g € Gg,q, gt,t)=
1}. More precisely, for every g in this set there exggt € Gg’q and semi-Riemannian
metric g(2) of signature(p — 1, ¢) and defectl depending om — 1 real parameters,
which for g(1) are not all zeros, such that1) # g, g2 # & ¢, (8) = ¢ (8w =
9 (8@)s g, 1) =1, gy(t,1) = 0, and g(1) and g(2) are the only solutions of the
equationgy, (g) = ¢y, (¢') with respect to the semi-Riemannian megic

(iv) the mappy, is two-to-one onthe setg : ¢ € Gg’q, g(t, 1) #0, %} forn :=dimM =
land{g: g € Gg,q, g, t) #0, % 1} for n > 2. More precisely, for g in these sets
there exists a unique semi-Riemannian megfisuch thaty}, (g) = ¢}, (¢’) andg # g'.
The signature and defect gf depend on t; in particular, fog(z, 1) < 1 the signature
of g’ is (p, ¢) and only forn = 1 andg(z, r) = 1 the metricg’ is semi-Riemannian, its
defect being equal tb, i.e.,g’ = 0.

Remark 4.1. The choice of gwitlg(z, ) = %(resp.g(t, t) = Oforn = landg(¢,t) = 0,1
for n > 2) in case(iv) returns us to the casgi) (resp. casdiii)). To prove this, use that
(2.1)impliesg’(t, 1) = g(t, 1), 1 — g(t, 1) if ¢!, (g) = ¢}, (g).
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Proof. Case(i). Forr = 0 we havey],(g) = —g, sowg is reversing of the the metric [4],
p. 92 and hence it is bijective.

Case(ii). Let g1, g% € Gqu andg“(¢,t) = A # 1,a = 1,2. We have to show that
ol (gh) = ¢!,(g?) implies g = g2 Since from (2.1) follows(g!,(g"))(s, 1) = (A —
1)g“(s, 1) and (¢}, (g*))(r,r) = —g*(r, r) for arbitrary vector fields andr on U with
g(r,t) = 0, in a basig E;} in which the matrices of botg! and g2 are diagonalgfj =
g48;; (i is not a summation index here!) witlf = +1,2 the equation}, (g}) = ¢!, (g?)
implies Y, (g} — g)t's’ = 0 andY"; (g} — g2 ()% = 0. The former of the last two
equations giveg! — g? = 0fori € I :={j : j € {1,...,n}, t/ # O} and the latter one
with r' = 0fori e I andr’ = A’ e Rfori ¢ I yieldsg! — g? = O fori ¢ I. Therefore
gt = g? which is equivalent tg! = g2 in {E;}.

Case(iii). Supposeg € G‘,l{,q with g(z, 1) = 1 is given. We have to solve the equation
vy, (8) = ¢, (g") with respect tg’ € G,‘,’,q, g # g. In the special basis (at somec M
and with respect t@) defined in the ‘non-isotropic’ case of the proof of Proposition 2.1,
this equation reads

8 = &j — 8i1dj1+ 8181
as in the basis choseh = aé'l, g;; = &;6;; with &; = £1, andg(t,1) = 1 implies
£1 = a? = +1. Choosingg;; = a; € Rfori > 2, we getglfj =gij +a;a;fori, j > 2.
Sincegi1 = 1811 = 1, fori, j = 1 we obtain the equatiog, = (g/ll)2 with solutions

gm11 = 1 = g1 andgp)11 = 0. Consequently, in the special basis used, we find the
following two solutions ok}, (g) = ¢}, (¢') with respect teg’:

l=yg11 fori,j=1, 0 fori, j =1,

) gij taiaj fori,j>2, ) gij+bib; fori,j>2,
L P fori>2 j=1, @V~ ] fori >2,j =1,
aj fori=1;>2 bj fori=1,j>2,

whereg;, b; € R. Sinceg;; = ¢;8;; with e = 1 ande; = +1 fori > 2, we haveg) # g
and the equalitg;) = gisvalidiffa; =--- =a, =0.

The equalitiegg(1) (¢, 1) = 1 andg)(t,t) = O are evident consequencestbf= as'!
with o2 = 1.

Since a simple calculation shows dgtif;; — A8;;] = det[g;; — A5;;] and detk();; —
A8;;] = det[g;; — g116i18j1 — Ad;;] for A € R, the metricg(y) is of signature(p, ¢) and
g(2) is of signaturgp — 1, ¢) and defect 1 as the signaturegis (p, g).

Case(iv). Forn = 1 andg(z, ) = 1, the assertion is a corollary of the proof of case (iii)
above: sincg11 = 1 in the basis used in it, the solutionsejf (g) = ¢}, (g") areg) = g
andg) = 0 and hencg ) # g. So, below we suppose> 2 andg(t, 1) # 1.

If s is an arbitrary vector field off, applyinge}, (g) = ¢, (g') to the pair(s, r) and using
(2.1),we getf(r,t) — 1g(s, 1) = [¢g'(t, 1) — 1]1¢/(s, t). The choices = ¢ yields

gt.n=1-gt1)#03.1

12 5ee footnote 6.
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as we look forg’ with g’ # g andg(z, 1) # 0, % 1. Therefore, the last equation reduces to
[g(t, 1) —1]g(s, 1) +g(t,1)g’ (s, t) = 0. Writing this equation in a bas{%; } in which both
metricsg andg’ are diagonal,i.eg;; = g,-a,-j,andglfj = g!8;j, we obtairg; = ((1/g(z,1))—
Dgifori el :={j:je{l ... ,n}, t/ # 0}, wherer := t'E;. Analogously, defining
on U a vector fieldr with ri := O fori € I andr’ := A’ € Rfori ¢ Iin{E;}, we
see thag(r, 1) = 0 and(g}, (2))(r,r) = (¢}, (g))(r, r) is equivalent tg(r, r) = g'(r, r),
which, when written i E; } impliesg! = g; fori ¢ I asiA’,i ¢ I, are completely arbitrary.
Consequently, the equatign, (g) = ¢j, (g") has a unique solution with respectgowhich

in the basiq E;} is

g/ = g/(SU g/ = (g(},t) - 1) 8i for ¢! # 0,

Yoot ' gi forti =0,
wherer’ are the components ofin {E;}, + = ' E;. From these results, the rest of the
assertion in case (iv) follows. O

Remark 4.2. From the proof of Propositiod.1follows that in the casév) of Proposition
4.1,whengj, is 2:1map,g’(t,1) = 1 — g(r, 1) is fulfilled while in the caséiii) is valid
gyt 1) = g(t, 1) andgp)(t,t) = 1 — g(z,t). These connections agree with the general
relation g’ (¢, t) = g(¢, t), 1 — g(z, t) which is a consequence (£.1).

Proposition 4.2. Letthe vector field t be arbitrarily fixed on U and the mgp : GY - GgY
be given by(2.1). Then(g}; o ¢},)(g) = g iff g € GV is such thag(z, 1) = 0, 2.

Remark 4.3. Note, due tq2.1), we have

(@@, =g  iff gt,1) =02 (4.1)
Proof. Applying (2.1), we getg}, o ¢})(g) = {[g(t,1) — 1> — 1} g(. ) ® g(-. 1) + g.
Therefore(py, o ¢y,)(g) = g iff g(r,1) =0, 2. O

From the just-proved result immediately follows (see also [20, p. 14, Proposition 6.9])

Corollary4.1. The mapj, forgiventisbijectiveonthesetg’, := (¢ : g € GV, g(t,1) =
2} cGgY anth‘{O ={g:g€GY, gt,t) =0} c GY.

Remark 4.4. The bijectiveness gff, on GIL;’2 does not contradict to Propositioh1,case
(iv). Actually, ifg € Gf{z, g € GY, g # g, andyl, (") = ¢}, (g), then(see Remark.2)
g, t)=1—g(t,t)=—-1+#2, ie.g isnot int{Z.

We have to note that if the Riemannian metricand# are given, then generally there
does not exist a vector fiekdconnecting them through= g(-, 1) ® g(-, ) — g. There are
two reasons for this. On one hand, by Proposition 2.1 for this the metangi must be of
‘corresponding’ signature, viZp, ¢) and(g + 1, p — 1) or (p, ¢) and(q, p), respectively.
On the other hand, in local coordinates the mentioned connection bepvweseth reduces
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to a system Of%n(n + 1) equations for th&a components of and, consequently, it has
solution(s) only in some exceptional cases. It is clear, even for Euclidean rgedrncd
Lorentzian metrid: suchz exists only as an exception, not in the general case.

Corollary 4.2. Letp > 1, for everyg € Gg,q a vector fieldr, on U be chosen such that
gy, 1) =2,andT == {1, 1 g € G‘,‘{,q}.Thenthe mapa;’q , Gg’q — G5+1 ,_1givenvia

g 8T i=g( 1) ®g(. 1) — g (4.2)

is bijective, i.e., one-to-one onto map

Proof. Atfirstwe note that, with g(z,, t,) = 2 always exists for everybecause op > 1.
(For example, one can sgt = V210//g(t0, 10), where in a basis in which;; = &8;;,

g; = £1, ande; = +1 for some fixedk € {1, ... , n} the components af aret) = a8,

a € R\{0}; so theng (1o, 1) = «? > 0.) Now, from Proposition 4.2 and Corollary 2.1, case
(i), we deduce

4.3)

T T ; T T ;
e} =idsu , [} =id v ,
Pg+1,p-1°Ppq Gpy $p.q © Pa+1p-1 Gyirp-1

from where, by virtue of [20, p. 14, Proposition 6.9], the result formulated follows.[]

Corollary 4.2 demonstrates the existence of a bijective correspondence between the
classes of Riemannian metrics with signatdpeq) and (¢ + 1, p — 1) on any differ-
entiable manifold admitting such metrics (and vector fields with corresponding properties
— see Section 3). The explicit dependence of this mapping on the choice of the vector
fieldst, utilized in its construction has to be emphasized. In particular, this is essential for
physics: there is a bijective correspondence between the sets of Euclidean and Lorentzian
metrics as they have signatur@s 0) and(1, n — 1), respectively'3

From here an important result follows. Since every paracompact finite-dimensional dif-
ferentiable manifold admits Euclidean metrics ([8], p. 280; [9], Chapter IV, Section 1,
Chapter I, Example 5.7hn any such manifold admitting a vector field with an Euclidean
norm greater than one exist Lorentzian metiéssthey are in bijective correspondence with
the Euclidean one$? The opposite statement is also true: if hexist Lorentziank, and
Euclidean e, metrics, then there is a vector fieldwith e(z, 7) > 1.1° In fact, sinceh is
Lorentzian, there is exactly one positive eigenvalye 1, > 0, for which the equation
hijt{ = hie;jt] has a non-zero solution defined up to a non-zero constant multiplier.
Choosing this multiplier such thatz,, t,) > A4, we finde(¢4, t+-) > 1. Letus recall (see
Section 3) that the existencerovith e(z, 1) > 1 is equivalent to the one of a non-vanishing
vector field onM. So, if, as usual, we admit /2, andr to be of clas€™, m > 0, then such
a vector field may not exist on the whalé. If this happens to be the case, the above, as

131n the four-dimensional case, a special type of relation between Euclidean and Lorentzian metrics is established
in [7] via the Einstein equations.

14 see ([4], p.149, Proposition 37; [19]) for more general results on the existence of Lorentzian metrics.

15 Generallyh, e, andr are not connected via (2.3).
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well as the following, considerations have to be restricted on the neighborhood(s) admitting
non-vanishing vector field of clags™.

Corollary 4.3. Let for every metrigg € Gg,q be chosen a vector field on U such that
gty 1) =0andT = {1, : ¢ € GY ). Thenthe mapy|  : GY  — Gl defined by
(4.2)is a bijection

Proof. At the beginning we notice that one can always put= 0 for everyg e Gg,q

but if p,g > 1, then for anyg € Gé’)q existst, # 0 with g(t,,1,) # 0. (In a basis in
which g;; = &;8;;, & = £1 andg; + ¢ = 0 for some fixedk,! € {1,...,n} we can
setr; = (8" +8'), « € R\{0}.) From Proposition 4.2 and Corollary 2.1, case (i), we
infer

T
I/Ip,q o q » |dGU s I/Iq p© lﬂp q |dg§7/q, (4.4)
which concludes the proof. O
Let us fix some bijective maps, 4 : G5, — GJ,; ;andy,, : G, — G,

given via (4.2) fort, with g(t,,1,) = 2 andg(ze, t;) = 0, respectively. Heré;g’q is the
set of Riemannian metrics dii with signature(p, ¢). (Let us recall that in the ‘smooth’
case we cannot pif = M as, generally, thep, , may not exist.) Then the mayg, , :=
Vg+1p-10Ppg - Gg,q — Gg_l,qﬂ is bijective for anyp, g € NU {0} such thatp + ¢
n = dim M. Hence

GUOXi)OGn 1, lxn_)1 1Gn 22)0:)2’2 = 2Gln 1X1" 1GOn
is a sequence of bijective maps. In short, this means that there is an bijective real correspon-
dence (given explicitly via compositions of maps like (2.1)) between Riemannian metrics
of arbitrary signature. Therefore, starting from the class of Euclidean metrits @V,
we can construct all other kinds of Riemannian metricd/oy means of the mapsg, .,
p +q = dim M. Note, in the ‘smooth’ case the last statement may not hold globally on
but it is always valid locally.

5. Conclusion

The main results of the previous considerations are expressed by Propositions 2.1, 4.1 and
4.2, and Corollary 2.2. Their consequence (see Corollary 4.2) is the existence of bijective
mapping between metrics of signatuies ¢) and (¢ + 1, p — 1), in particular between
Euclidean and Lorentzian metrics. Another corollary of these propositions is that on a
manifold exist metrics of signatukg + 1, p — 1) if it admits a metricg of signature(p, g)
and a vector field with g(z,7) > 1. When applied to Lorentzian and Euclidean metrics,
the last assertion reproduces a known result [2, Section 2.6]. Vectorfisltsg (¢, t) > 1
exist onM iff it admits a non-vanishing vector field over the whole maniféfd If we do
not impose additional conditions on the last field, it always exists. But if we require it to
be of clasC™ with m > 0, its existence is connected with the topological propertied of
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and one should explore the situation in any particular case. Generally non-vanighing
vector fields exist locally, but globally this may not be the case.

By Corollary 4.3 there is bijective correspondence between metrics of signatuje
and(q, p), etc. Itis important to be noted that the case of a vector figith g(z,7) < 1
significantly differs from the one af with g(z, r) > 1 when some smoothness conditions
are imposedC™, m > 0 vector fieldr with g(z,7) < 1 exists over any subsét C M,
in particular over the whole manifold¥. In fact, a trivial example of this kind is the zero
vector field ovelU € M.

For the metricg* andg~ (see (2.4) and (2.5)) results analogous to those for= &
in Sections 2 and 4 can be proved. Since this is an almost evident technical task, we do not
present them here. In connection with this, we will note only that the equr;(lgﬁ'*eﬁE =g
and(gtH)F = g are valid iff +g(¢,¢) = 0, +2 and+g(¢, t) = 0, —2, respectively, while
the equationgg®) ™ = g and(g*)* = g cannot be fulfilled for (real) Riemannian metrics
as they are equivalenttbg (s, 1) = 1—i, 1+iand+g(s, 1) = —1—i, —1+1i, respectively,
ii=4+v—1.

Metrics like g*, defined by (2.5), find applications in exploring modifications of general
relativity. For instance, up to a positive real constant, defined in [7, Section IV, Eq. (41)]
metricgEMStis of the typeg® with ¢ = sign(—1) andy; = /[2A[n; with A := (. + B) /(a +
28), where the real parametersandg and the covectoy; are described in [7, Section I1].

A corollary of Proposition 2.3 is the assertion of ([2], Section 2.6; [3], p. 219; [4], p.
149, Lemma 36) that i is a Euclidean metric ani is a non-zero vector field, then=
g—2g(, X)®g(-, X)/g(X, X) isaLorentzian metric. In fact, putting= v2X//5(X, X)

(= +/2U in the notation of [4]), we get = g — g(-, 1) ® g(-, 1) andg(t,1) = —2 < —1.
Therefore,s has signaturén — 1, 1) as that ofg is (n, 0), i.e., it is a Lorentzian metric
according to the definition accepted in [2—4].

Since (2.1) is insensitive to the change> —r, we are practically dealing with the field
(z, —t) of linear elements, i.e. [2, Section 2.6] a field of pairs of vector fields with opposite
directions, not with the vector fielditself. If (X, —X) is a field of linear elements oM,
then for anyr € R, A > 1 the vector fieldss. := +./A/e(X, X)X have Euclidean norm
e(t+,t+) = A > 1. Conversely, if is a vector field withe(z, 1) > 1, then(z, —¢) is a field
of linear elements on/. Combining the just-obtained results, we infer thatnexist
Lorentzian metrics iff on it exists a field of linear elements. This is a known result that can
be found, e.g., in [2, Section 2.6].

Let e andh be, respectively, Euclidean and Lorentzian metrics connected by (2.1) for
somer with e(z, t) > 1. Now we shall prove that for a suitable choice tfe setV of vector
fields onM can be splitinto a direct suv = V™ @ V~ in which V' is orthogonal td/ ~
with respectto bothandhs, andi|y+ = Fe|y«. Infact, definingy ™ := t* 1t =At, A €
R\{O}} andV~ := {r~ :e(r—,t) = O}, we see that far*, r* € V*isfulfillede(r—, t*) =
ht,tH =0,h(s™,t7) = —e(s—,t7)anda(sT, 1) = (e(t, t)—1e(st, tT). The choice
of ¢ with e(z, 1) = 2 completes the proof. In this way we have obtained an evident special
case, concerning Lorentzian metrics, of [16, p. 434, Proposition VII]. As a consequence
of the last proof, as well as of (2.1), we see that any set of vector fieltfs iwhich are
mutually orthogonal (or orthonormal) with respecetis such also with respect tofor any
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t with e(z, t) > 1 (a good choice ig(z, t) = 2 — see (4.1)). Sets of this kind are often used
in physics [2]. Evidently, if we add to such a set the vector fietthe mutual orthogonality
of the vector fields of the new set will be preserved.

In some sense, the deviation of a Lorentzian metfiom a Euclideara can be described
by an appropriate choice of certain vector figldll connected by (2.3) under the condition
e(t,t) > 1.In[1], this vector field is interpreted as a field of the time, the so-called temporal
field. In [1], a normalization conditioa(z, r) = 1 is imposed on (see [1, Eq. (3)]), which,
as we proved in this paper, contradicts the Riemannian character of the metrics considered.
Consequently, this condition has to be dropped and replace@wijth > 1. The physical
interpretation ot as a temporal field will be studied elsewhere.

We also have to note that the statement in [1, p. 13] that the determinants of Eu-
clidean and Lorentzian metrics, corresponding via (2.3), differ only by sign is gener-
ally wrong. In fact, in a special basig;} in which ¢;; = &; ands’ = 81 hold,®
we have detg;;] = (—=1)"*t1(e(t, t) — 1) which in an arbitrary basis reads detl =
(=)™t (e(r, 1) — D)det [ei;]. Therefore, detg;;] 4 det [e;;] = O'is true only in two special
cases, viz. ifn = 2k ande(t,t) = 2 orifn = 2k +1 ande(t,t) = 0,k = 0,1, ....
Moreover, by Corollary 2.1, the second case cannot be realizedsiEuclidean and;
Lorentzian. Thus, the mentioned statement is valid only on even-dimensional manifolds
and vector fields with norm 2.

There is a simple, but useful result for physics. Given metgsicg™, andg* and a
vector fields non-isotropic with respect tg (i.e., g(z,t) # 0), all connected via (2.1),

(2.4) and (2.5). Then there exist (local) fields of bases orthogonal with respect to all these
metrics. To prove this, we notice that{if;} is a field of bases witlk,, = Ar, A # 0, co
andg(E;, E;) = o;6;j, whereo; : M — R\{0} and§;; are the Kronekes-symbols,
theng®(E;, E;) = B*8;;, wherep™ = o; for 1 < i < n andBf = a, £ o2/22, and
g':t(E,', Ej) = Bii&'j with Bli =—qa;forl<i<n andﬁf = —u, = (13/)\,2.

We end with the remark that the results of this paper may find possible applications in
the physical theories based on space—-time models with changing signature (topology) (see,
e.g. [21,22)).
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